Monatshefte für Chemie 115, 597-603 (1984)

2 D-NMR of Natural Products, Part V¹ Structure Elucidation and Complete ¹H- and ¹³C-Assignment of Resin Acid Derivatives

Ernst Haslinger*, Hermann Kalchhauser, Wolfgang Robien, and Harald Steindl

Institut für Organische Chemie, Universität Wien, A-1090 Wien, Austria

(Received 5 October 1983. Accepted 27 October 1983)

Application of 2 D-NMR-techniques including heteronuclear 2 D-J-resolved spectroscopy and ${}^{1}\text{H}$ — ${}^{13}\text{C}$ -2 D-shift correlation is used to assign the ${}^{1}\text{H}$ - and ${}^{13}\text{C}$ -resonances of resin acid derivatives.

(Keywords: 2 D-NMR; 2 D-J-Resolved NMR spectroscopy; ¹H—¹³C-Shift correlation; Diterpene acids)

2 D-NMR von Naturprodukten, 5. Mitt.: Strukturaufklärung und komplette ¹Hund ¹³C-Zuordnung von Harzsäure-Derivaten

2 D-NMR-Methoden (2 D-J-resolved-Spektren, $^1\rm H-^{13}C-Shiftkorrelations-spektren)$ erlauben die Zuordnung der $^1\rm H-$ und $^{13}\rm C-Signale$ von Harzsäurederivaten.

Introduction

During our attempts to use resin acids as precursors for the synthesis of steroids we have studied various *Diels-Alder*-adducts of levopimaric acid^{2,3}. One of the main problems in the course of this work is the characterization of reaction products by NMR. Even using highfield NMR-spectrometers, the analysis of the proton spectra of complex natural compounds like resin acids is not possible with conventional methods. In these cases 2 D-NMR-techniques have proved to be very useful for obtaining additional information^{4,5}. We have used several of these modern techniques simultaneously to get an unambiguous assignment of the ¹H- and ¹³C-resonances of compounds **2**, **3** and **4**.

For the sake of clarity we have used the same numbering system for compounds 1 to 5.

Results and Discussion

The assignment of the ¹H- and ¹³C-resonances of compounds 2–4 is given in Tables 1 and 2, respectively, and will be discussed in detail. For the sake of clarity the shifts of compounds 1 and 5 are also listed in the tables^{5,6}. The assignment of 5 was checked by 2D-NMR-experiments and is in full agreement with literature.

Compound 2

The assignment of the carbons 15, 18 and 21 is possible by shift arguments and multiplicity information from a J-modulated ¹³C-spectrum. The anhydride carbons and the two remaining singuletts at 137.9 and 140.6 ppm could not be assigned unambiguously.

The aliphatic region of the ¹³C-spectrum consists of 18 well separated lines. The signal at 51.0 ppm is due to the ester-methyl group. The methyl group attached to C-17 can be easily detected in the SFORD-

	1	2	3	4	5	
· · · · ·						
1	38.1	37.9	37.8	37.6	38.4	
2	17.3	17.3	17.4	17.4	18.9	
3	37.2	37.2	37.1	37.0	37.1	
4	47.2	47.2	47.4	47.2	47.8	
5^{+}	49.6	49.5	49.7	49.4	45.4	
6	22.0	22.0	22.3	22.1	22.2	
7	35.2	34.9	35.3	34.6	30.4	
8	40.4	41.0	41.7	42.2	147.3	
9	53.1	53.2	54.8	55.1	134.8	
10	37.7	37.6	38.0	37.8	37.2	
11	27.2	26.3	23.9	24.5	124.5	
12	35.8	33.0	36.3	36.8	124.2	
13	45.7	45.6	49.1	48.8	145.8	
14	53.0	52.8	54.5	55.5	127.3	
15	125.4	129.1	125.0	134.7		
16	148.1	141.9ª	148.2	138.9		
17 -	33.0	139.3^{a}	33.1	67.0	34.0	
18	20.1 ^a	112.9	20.6	38.9ª	24.3	
19	20.7 ^a	19.7	20.6	37.4^{a}	24.3	
20	17.0	17.0	17.1	17.2	16.9	
21	178.4	178.4	178.5	178.3	178.3	
22	15.5	15.2	16.3	16.1	25.3	
23	51.6	51.6	50.9^{a}	51.1^{b}	51.5	
24	172.6^{b}	171.9^{b}	174.2^{b}	173.2°		
25	170.8^{b}	170.8^{b}	173.8^{b}	173.0°		
26			51.5^{a}	51.5^{b}		
27			51.5ª	51.8^{b}		

Table 1. ¹³C-Chemical shifts of compounds **1–5** in C_6D_6 ; δ -values are in ppm from TMS (±0.05); ^{a,b,c} shift values may be interchanged

spectrum by its large residual splitting. The proton signal of Me-22 is shifted highfield by the anisotropy of the C-15/C-16-double bond, thus yielding the assignment of C-20 and C-22 via the $2 \text{ D}^{-1}\text{H}^{-13}\text{C}$ -shift correlation.

In the ¹H-spectrum the protons H-7 eq, H-12, H-13 and H-14 show characteristic splitting patterns and are well separated. The shift correlation spectrum therefore allows the assignment of C-7, C-12, C-13 and C-14. C-7 gives in turn the resonance position of H-7 ax.

The assignment of the remaining tripletts in the lowfield region of the 13 C-spectrum (C-1 and C-3) is possible because of the characteristic highfield shift of H-1 ax⁵. The assignment of the remaining 13 C-signals was done by comparing spectra of 1 and 2, yielding the shift values of all protons by the shift correlation experiment.

40 Monatshefte für Chemie, Vol. 115/5

Compound 3

The ¹H-spectrum shows an isopropyl group and two further aliphatic methyl groups. The corresponding ¹³C-resonances can be detected via the shift correlation experiment using the same arguments for the assignment of H-22 and H-20 as above.

	1	2	3	4	5
l eq	1.03	0.97	1.14	1.12	2.12
$1 \mathrm{ax}$	0.63	0.61	0.68	0.63	1.38
2	1.18 - 1.25	1.17 - 1.26	~ 1.2	~ 1.2	~ 1.4
$3\mathrm{eq}$	1.50	1.52	1.47	1.46	1.58
$3\mathrm{ax}$	1.77	1.74	1.80	1.68	1.83
5	1.71	1.75	1.81	1.75	2.32
6	1.18 - 1.25	1.17 - 1.26	~ 1.3	~ 1.2	1.40/1.73
$7 \mathrm{eq}$	2.54	2.54	1.78	1.91	2.74
7 ax	1.53	1.50	1.71	1.53	2.74
9	0.77	0.96	1.35	1.41	
11 eq	0.73	0.73	0.93	1.12	
11 ax	0.98	0.80	1.67	1.62	7.13
12	2.74	3.28	2.92	3.14	7.02
13	2.30	2.35	2.87	3.05	
14	1.53	1.97	3.06	3.11	6.86
15	5.23	5.56	5.48	5.72	
17	2.08	_	2.30	·	2.74
18	0.85^{a}	4.88/5.19	1.07	$3.79/3.93^{b}$	1.19
19	0.86ª	1.58	1.07	$3.90/4.05^{b}$	1.19
20	1.15	1.13	1.20	1.17	1.27
22	0.26	0.22	0.46	0.45	1.10
23	3.40	3.40	3.40	3.23°	3.35
26			3.51	3.38°	
27		_	3.51	3.34°	

Table 2. ¹H-Chemical shifts of compounds 1–5 in $C_6 D_6$; δ -values are in ppm from TMS (± 0.01); ^{a,b,c} shift values may be interchanged

H-12, H-13 and H-14 are separated from all other ¹H-resonances, thus giving easily the corresponding carbon signals. Ring opening of the anhydride causes a highfield shift of H-7 eq while C-7 remains unaffected. Irradiation at H-12 gives the resonance position of the protons at C-11, leading to an assignment of the carbon atom itself. C-1 and C-3 can be differentiated by the corresponding ¹H-chemical shifts. The assignment of the residual resonances was done in analogy to the other compounds.

Compound 4

The ¹³C-spectrum of **4** shows several groups of resonances with nearly identical shift values. Therefore ¹³C-multiplicity assignment was performed by a ¹³C—¹H-J-resolved experiment (Fig. 1).

The ¹H-spectrum of **4** exhibits two overlapping AB-systems near 4 ppm which correspond to H-18 and H-19 giving the shifts of C-18 and C-19. The assignment of the carbons and protons at positions 12, 13 and

14 was done in the usual manner. The ¹H-resonance of H-7 eq is well separated giving C-7 and in turn H-7 ax via the shift correlation spectrum (Fig. 2). Me-22 appears in the ¹H-spectrum at highest field leading to the assignment of C-22. Discrimination of C-1 and C-3 is possible by the highfield shift of H-1 ax leading to the assignment of C-1 and C-3. The remaining three tripletts (C-2, C-6 and C-11) could be assigned by comparison of 4 with the other compounds (see Table 1). The low-field singulett at 67.0 ppm belongs to C-17, the two dubletts for C-5 and C-9 are found at 49.4 ppm and 55.1 ppm, respectively.

Comparing the ¹³C-shifts of compounds 1–4 one finds that the shifts of carbons 9, 11, 13 and 14 are sensitive to the orientation of the carbonyl groups attached to the C-ring. Introduction of a C=C-double bond in position 17 induces a lowfield shift for C-15 and a highfield shift for C-

16⁷. The structure determination of compound **4** was mainly based on the results of the 2 D-NMR-shift correlation. The influence of the Brsubstitution on the ¹³C-shifts can be seen by comparing the shift values of **3** and **4**. Only the two olefinic carbons are shifted considerably (C-15: 10 ppm to low field, C-16: 10 ppm to high field). This is probably due to

Fig. 2. ¹³C—¹H-shift correlation spectrum of 4 in C₆D₆

electronic and steric interactions with the Br-atoms. The ¹H-shifts reveal no big influence of the Br-substituents on the surrounding protons. Only the equatorial hydrogens attached to the C-ring are shifted slightly to lower field in compound 4.

Finally we have computed theoretical shift values with a computer program from a ¹³C-data bank⁸. Theoretical and experimental shift values have been in excellent agreement.

Acknowledgements

We are grateful to the Fonds zur Förderung der wissenschaftlichen Forschung for providing the NMR-spectrometer (Project No. 4009). H. S. is grateful to Fa. Krems-Chemie (Krems/Donau) for financial support.

Experimental

The syntheses of compounds 1-5 have been described elsewhere^{3,9,10}.

All NMR-measurements were performed on a Bruker WM 250 NMR spectrometer equipped with an 80 K ASPECT-2000 computer running the DISNMRP-program¹¹. Sample tubes of 5 mm diameter have been used. The deuterium resonance of the solvent provided the field-frequency-lock.

Typical parameters were:

 $^{1}\mathrm{H}$

 $SW=2\,500\,{\rm Hz};$ digital resolution: 0.3 Hz; $PW=1\,\mu{\rm s}$ (15°); NS=32-64; $T=298\,{\rm K};$ concentration: approx. 0.02 M.

¹³C

 $SW = 16\,000$ Hz; digital resolution: 1 Hz; $PW = 5\,\mu s\,(30^\circ)$; $NS = 500-2\,000$; T = 303 K; concentration: approx. 0.4 M.

J-Modulated ¹³C-Spin-Echo

Pulse sequence: D $1-\pi/2-\tau$ (DO) $-\pi-\tau$ (BB)-FID; $SW = 16\,000$ Hz; $NS = 500-2\,000$; PW (90°) = 16 µs; T = 303 K; $\tau = 7.5$ ms for J = 133 Hz; recycle delay: 2.5 s.

Heteronuclear 2 D-J-Resolved Spectrum

¹H—¹³C-Shift Correlation

 $\begin{array}{l} \mbox{Pulse sequence: D 1-$\pi/2$ (PH 1, 1H)-$t_1/2-$\pi$ (PH 3, 13C)-$t_1/2-$\Delta_1-$\pi/2$ (PH 2, 1H)-$\pi/2$ (PH 4, 13C)-Δ_2-FID (BB); $$SW_1 = \pm 500 to \pm 900 Hz; $$SW_2 = 3\,000 to $8\,000\,\text{Hz}; $$NS = 160-640; $$T = 303\,\text{K}; $$PW($\pi/2$, $13C) = 18\,\mu\text{s}; $$PW($\pi/2$, $14H) = 17\,\mu\text{s}; recycle delay: 2.5\,\text{s}; data matrix: 2\,\text{K}\,(4\,\text{K}) \times 128\,(256); $\Delta_1 = 4\,\text{ms}; $\Delta_2 = 2.67\,\text{ms}. \end{array}$

References

- ¹ For Part IV see: Breitenbach M., Haslinger E., Robien W., J. Chem. Soc., Perkin II, in press.
- ² Haslinger E., Steindl H., Monatsh. Chem. 114, 1141 (1983).
- ³ Haslinger E., Kalchhauser H., Steindl H., Monatsh. Chem. 114, 1259 (1983).
- ⁴ Hall L. D., Sanders J. K. M., J. Amer. Chem. Soc. 102, 5703 (1980).
- ⁵ Haslinger E., Kalchhauser H., Robien W., Monatsh. Chem. 113, 805 (1982).
- ⁶ Nishida T., Wahlberg I., Enzell C. R., Org. Magn. Reson. 9, 203 (1977).
- ⁷ Stothers J. B., C-13 NMR Spectroscopy. New York-London: Academic Press. 1972.
- ⁸ Robien W., Monatsh. Chem. 114, 365 (1983).
- ⁹ Langlois N., Gastambide B., Bull. Soc. Chim. France 1965, 2966.
- ¹⁰ Blade-Font A., Rocabayera T. d. m., Salomo S. A., Afinidad 1971, 28 (292), 1301.
- ¹¹ Hull W. E., 2 D-NMR-Spectroscopy, Aspect 2000/3000-Manual. Karlsruhe: Bruker Analytische Meßtechnik. 1982.